Detroit Diesel Service Manual This manual provides instruction for servicing on-highway applications of the Detroit Diesel Series 60 Diesel and Natural Gas-Fueled Engines. Specifically a basic overview of each major component and system along with recommendations for removal, cleaning, inspection, criteria for replacement, repair and installation and mechanical troubleshooting are contained in this manual. DDEC III/IV troubleshooting concerns are contained in the DDEC III/IV Single ECM Troubleshooting Guide, 6SE497. DDEC V troubleshooting concerns are contained in the DDEC V Troubleshooting Guide, 6SE570.
Detroit Diesel Series 60 Service Manual This manual contains complete instructions on operation, adjustment (tune-up), preventive maintenance, and repair (including complete overhaul) for the Series 60 Inline Diesel Engines. This manual was written primarily for persons servicing and overhauling the engine. In addition, this manual contains all of the instructions essential to the operators and users. Basic maintenance and overhaul procedures are common to all Series 60 Engines, and apply to all engine models.
This manual is divided into numbered sections. Section one covers the engine (less major assemblies). The following sections cover a complete system such as the fuel system, lubrication system, or air system. Each section is divided into subsections which contain complete maintenance and operating instructions for a specific engine subassembly. Each section begins with a table of contents. Pages and illustrations are numbered consecutively within each section.
Detroit Diesel Series 60 Information can be located by using the table of contents at the front of the manual or the table of contents at the beginning of each section. Information on specific subassemblies or accessories within the major section is listed immediately following the section title.
Detroit Diesel CLEARANCE OF NEW PARTS AND WEAR LIMITS
New parts clearances apply only when all new parts are used at the point where the various specifications apply. This also applies to references within the text of the manual. The column entitled "Limits" must be qualified by the judgement of personnel responsible for installing new parts. For additional information, refer to the section entitled "Inspection" within this section. Refer to section ADDITIONAL INFORMATION, "Table of Specifications, New Clearances, and Wear Limits" under "Specifications", for a listing of clearances of new parts and wear limits on used parts.
THE FOUR CYCLE PRINCIPLE FOR DIESEL ENGINES
The diesel engine is an internal combustion engine, in which the energy of burning fuel is converted into energy to work the cylinder of the engine. In the diesel engine, air alone is compressed in the cylinder, raising its temperature significantly. After the air has been compressed, a charge of fuel is sprayed into the cylinder and ignition is accomplished by the heat of compression. The four piston strokes of the cycle occur in the following order: intake, compression, power and exhaust.
Detroit Diesel Intake Stroke
During the intake stroke, the piston travels downward, the intake valves are open, and the exhaust valves are closed. The down stroke of the piston facilitates air from the intake manifold to enter the cylinder through the open intake valve. The turbocharger, by increasing the air pressure in the engine intake manifold, assures a full charge of air is available for the cylinder. The intake charge consists of air only with no fuel mixture.
Detroit Diesel Compression Stroke
At the end of the intake stroke, the intake valves close and the piston starts upward on the compression stroke. The exhaust valves remain closed. At the end of the compression stroke, the air in the combustion chamber has been compressed by the piston to occupy a space about one-fifteenth as great in volume as it occupied at the beginning of the stroke. Thus, the compression ratio is 15:1.
Compressing the air into a small space causes the temperature of that air to rise. Near the end of the compression stroke, the pressure of the air above the piston is approximately 3445 to 4134 kPa (500 to 600 lb/in.2) and the temperature of that air is approximately 538°C (1000°F). During the last part of the compression stroke and the early part of the power stroke, a small metered charge of fuel is injected into the combustion chamber. Almost immediately after the fuel charge is injected into the combustion chamber, the fuel is ignited by the hot air and starts to burn, beginning the power stroke.
Detroit Diesel Power Stroke
During the power stroke, the piston travels downward and all intake and exhaust valves are closed. As the fuel is added and burns, the gases get hotter, the pressure increases, pushing the piston downward and adding to crankshaft rotation.
Detroit Diesel Exhaust Stroke
During the exhaust stroke, the intake valves are closed; the exhaust valves are open, and the piston is on its up stroke. The burned gases are forced out of the combustion chamber through the open exhaust valve port by the upward travel of the piston.
From the preceding description, it is apparent that the proper operation of the engine depends upon the two separate functions: first, compression for ignition, and second, that fuel be measured and injected into the compressed air in the cylinder in the proper quantity and at the proper time.
Detroit Diesel FOUR CYCLE PRINCIPLE FOR NATURAL GAS ENGINES
This engine is a four cycle internal combustion engine, in which the energy of burning fuel is converted into energy to work the cylinder of the engine. However, unlike the diesel engine, a combustible air and fuel mixture is introduced to the cylinder during the intake stroke. Upon compression, the temperature of this mixture is increased to a temperature below its auto-ignition threshold. Combustion occurs through means of a spark plug which ignites the mixture. See Figure 2 for the four stroke cycle utilized on the natural gas engine.